Ja n 20 06 Kähler manifolds and their relatives
نویسندگان
چکیده
Let M 1 and M 2 be two Kähler manifolds. We call M 1 and M 2 relatives if they share a non-trivial Kähler submanifold S, namely, if there exist two holomorphic and isometric immersions (Kähler immersions) h 1 : S → M 1 and h 2 : S → M 2. Moreover, two Kähler manifolds M 1 and M 2 are said to be weakly relatives if there exist two locally isometric (not necessarily holomorphic) Kähler manifolds S 1 and S 2 which admit two Kähler immersions into M 1 and M 2 respectively. The notions introduced are not equivalent (cfr. Example 2.3). Our main results in this paper are Theorem 1.2 and Theorem 1.4. In the first theorem we show that a complex bounded domain D ⊂ C n with its Bergman metric and a projective Kähler manifold (i.e. a projective manifold endowed with the restriction of the Fubini–Study metric) are not relatives. In the second theorem we prove that a Hermitian symmetric space of noncompact type and a projective Kähler manifold are not weakly relatives. Notice that the proof of the second result does not follows trivially from the first one. We also remark that the above results are of local nature, i.e. no assumptions are used about the compactness or completeness of the manifolds involved.
منابع مشابه
ar X iv : h ep - t h / 05 06 17 0 v 2 1 5 Ja n 20 06 Elements of ( super - ) Hamiltonian formalism
In these lectures we discuss some basic aspects of Hamiltonian formalism, which usually do not appear in standard texbooks on classical mechanics for physicists. We pay special attention to the procedure of Hamiltonian reduction illustrating it by the examples related to Hopf maps. Then we briefly discuss the supergeneralisation(s) of the Hamiltonian formalism and present some simple models of ...
متن کاملar X iv : 0 90 1 . 32 11 v 1 [ m at h . A G ] 2 1 Ja n 20 09 COMPACT KÄHLER MANIFOLDS WITH ELLIPTIC HOMOTOPY TYPE
Simply connected compact Kähler manifolds of dimension up to three with elliptic homotopy type are characterized in terms of their Hodge diamonds. This is applied to classify the simply connected Kähler surfaces and Fano threefolds with elliptic homotopy type.
متن کاملJa n 20 07 MULTIPLIER IDEAL SHEAVES AND THE KÄHLER - RICCI FLOW
Multiplier ideal sheaves are constructed as obstructions to the convergence of the Kähler-Ricci flow on Fano manifolds, following earlier constructions of Kohn, Siu, and Nadel, and using the recent estimates of Kolodziej and Perelman.
متن کاملKähler manifolds and their relatives
Let M1 and M2 be two Kähler manifolds. We call M1 and M2 relatives if they share a non-trivial Kähler submanifold S, namely, if there exist two holomorphic and isometric immersions (Kähler immersions) h1 : S → M1 and h2 : S → M2. Moreover, two Kähler manifolds M1 and M2 are said to be weakly relatives if there exist two locally isometric (not necessarily holomorphic) Kähler manifolds S1 and S2 ...
متن کاملStrictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006